PRODUCT DISTRIBUTION IN DIELS-ALDER ADDITION OF N-BENZYLIDENE ANILINE AND ENOL ETHERS

Jose Cabral and Pierre Laszlo[®] Laboratoire de chimie fine, biomimétique, et aux interfaces Ecole Polytechnique, 91128 Palaiseau, France.

Abstract : The two diastereomeric products, all <u>cis</u>, and <u>trans</u> phenyl, form in highly variable ratio (up to a factor 20), depending on the conditions.

The cycloaddition of N-benzylidene aniline 1 and electron-rich Z vinyl ethers 2 produces the two stereoisomers 3^1 and $4^{2,3}$.

While the overall yield is in the range 10-90%, the product distribution depends very much on the conditions (Table).

Reaction conditions import more than substrate structure (entries 9 and 10). The presence of an additional protic source, <u>t</u>-butanol or trifluoroacetic acid, increases significantly the yield enhances the 3/4 ratio, in the presence of the $K10/Fe^{3^+}$ catalyst¹ (entries 8-10). The best overall yield is achieved with ferric chloride as catalyst and with trifluoroacetic acid as an adjunct (entry 2). By comparison, the heterogeneous $K10/Fe^{3^+}$ catalyst decreases the yield somewhat, but improves the selective formation of the all-<u>cis</u> stereoisomer 3 (entries 2 and 9). The Bauld catalyst⁴, as an inducer of radical cation formation, does not have a major effect : its influence is compared (entries 1 and 4) with that of a tertiary amine as a free radical trap. The presence of the radical chain carrier tributyltin hydride appears to inhibit the reaction (entries 5 and 6). These results are consistent with two-step ionic mechanisms⁵, possibly in concurrence with the concerted pathway. As indicated here, (entries 8-12), the earlier observation of the exclusive formation of the <u>endo</u> adduct 3 in ether⁵ must be considered as fortuitous.

Run n°.	Temp.°C	time	solvent	catalyst, mol.eq.	co-factor, mol.eq.	<u>3</u> ,%	<u>4</u> ,%	<u>3/4</u>
1	25	48	methylene chloride	ferric chloride(0.1)	DABCO ^a (0.1)	46,8	24,9	1.9
2	25	71	lì	ferric chloride(0.1)	CF ₃ CO ₂ H(0.05)	45.1	45.0	1.0
3	25	71	11	-	CF3C02H(0.05)	11.1	56.3	0.2
4	25	4		ferric chloride(0.05)	(BrC ₆ H ₄) ₃ NSbC1 ₆ (0.05)	54.0	33.1	1.6
5	25	48	н	<pre>ferric chloride(0.05)</pre>	<u>n</u> Bu ₃ SnH(0.05)	18.0	12.0	1.5
6	25	48	в	-	<u>n</u> Bu ₃ SnH(0.05)	12.0	-	-
7	25	2	31	-	(BrC ₆ H ₄) ₃ NSbCl ₆ (0.05)	17.0	13.0	1.3
8	37	15	diethyl ether	K10/Fe ^{3+ b}	<u>t</u> BuOH(0.1)	63.4	19.6	3.2
9	37	21	ц	н	CF3C02H(0.05)	58.2	16.1	3.6
10 ^C	37	21	н	N	CF3C02H(0.05)	55.5	14.5	3.8
11	37	24	н	4	NEt ₃ (0.1)	19.2	14.1	1.4
12	37	17	н	li	<u>t</u> BuOH(0.1) + NEt ₃ (0.1)	9.5	-	-
13	78	17	acetonitrile	n	4- <u>t</u> Bu-C ₆ H ₄ OH(0.1)	50.2	36.1	1.4

^a diaza-1,4-bicyclo(2.2.2)octane ^b ferric chloride exchange ^c dihydrofuran as dienophile

Table. Cycloadditions Between N-Benzylidene Aniline and Dihydropyran.

References

- 1. J. Cabral, P. Laszlo, and M.T. Montaufier, <u>Tetrahedron Lett.</u>, <u>29</u>, 547-550.
- 2. T.L. Gilchrist and A.M. Stannard, <u>Tetrahedron Lett.</u>, <u>29</u>, 3585-3586 (1988).
- a) We retract the (2+2) structure that we had proposed incorrectly¹. The presence of an NH resonance² had escaped us. The original spectrum (¹H nmr) recorded on too small a sample, did not show this key feature, buried in the noise.
 b) 4 : (pmr, acetone-d_f) & : 5.26 (bs, 1H, NH); 4.63 (d, 1H, C-2); 4.34 (d, 1H, C-4); <u>ca</u>.

3.92 (dm, 1H); 3.65 (d.t, 1H); 7.4-6.6 (m, 9H, ArH); 1.8-1.4 (cm, 5H); J(Hz) : $J_{2,3} = 10.22$; $J_{3,4} = 2.86$

 $(cmr, CDC1_3)$ & : 146.5 (quat.C); 144.06 (quat.C); 131.54; 129.28; 128.64; 128.36; 121.61 (quat.C); 117.00; 114.84; 75.05 (CH); 68.36 (CH₂); 55.8 (CH); 40.0 (CH); 24.97 (CH₂); 23.15 (CH₂).

Other spectral features as in ref. (1).

- N.L. Bauld, D.J. Belleville, B. Harirchian, K.T. Lorenz, R.A. Pabon, Jr., D.W. Reynolds, D.D. Wirth, H-S. Chiou, B.K. Marsh, <u>Accounts Chem. Res.</u>, <u>20</u>, 371-378 (1987).
- T. Kametani, H. Takeda, Y. Suzuki, and T. Honda, <u>Synth. Comm.</u>, <u>15</u>, 499 (1985).

(Received in UK 9 October 1989)